Publications
Publications
Effects of oxygen-inserted layers and oxide capping layer on dopant activation for the formation of ultrashallow p-n junctions in silicon
avs.scitation.org – December, 2018
This paper, with co-authors from UC Berkeley and Axcelis provides an experimental demonstration of an application of MST® to improve shallow junction technology. The data and associated simulations indicate that MST® is beneficial for achieving shallower junctions with lower sheet resistance for advanced scaled devices.
This IEEE EDTM conference paper from the Atomera team and a co-author from Synopsys (NASDAQ:SNPS) describes the important discovery that MST can almost completely block the enhanced diffusion of doping profiles during the gate oxidation process. The effect is characterized by experiment and a simulation model is presented.
This paper describes an experimental characterization with co-authors from the University of Notre Dame demonstrating significant mobility improvement (23%) and gate leakage reduction (2.7x) benefits of MST for High-K Metal Gate (HKMG) NMOS devices. The ND team is led by Prof. Suman Datta, who is credited with developing the HKMG process at Intel.
Suppressing Oxidation-Enhanced Diffusion of Boron in Silicon With Oxygen-Inserted Layers – IEEE Journals & Magazine
ieeexplore.ieee.org – September 2018
This is the expanded journal version of the 2018 EDTM paper from the Atomera team and a co-author from Synopsys (NASDAQ:SNPS) describing the important discovery that MST can almost completely block the enhanced diffusion of doping profiles during the gate oxidation process. The paper provides further details on the TCAD simulation model and comparison with experiment.
Effects of oxygen-inserted layers on diffusion of boron, phosphorus, and arsenic in silicon for ultra-shallow junction formation
Journal of Applied Physics 123, 125704 (2018)
This paper, with co-authors from UC Berkeley and Axcelis provides an experimental demonstration of an application of MST® to improve shallow junction technology. The data and associated simulations indicate that MST® is beneficial for achieving shallower junctions with lower sheet resistance for advanced scaled devices.
Punch-through stop doping profile control via interstitial trapping by oxygen-insertion silicon channel
IEEE EDTM Conference 2017 – June, 2017
This paper with co-authors from Prof. Suman Datta’s group at Penn State University (now at University of Notre Dame) describes the experimental engineering and modeling of boron and phosphorus doping profiles with MST®. Applications in advanced planar and FinFET devices are discussed, in particular a novel FinFET punch-through stop design.
The impact of oxygen insertion technology on SRAM yield performance
IEEE EDTM Conference 2017 June, 2017
This paper with co-authors from UT Dallas and elsewhere describes the simulation of 28nm planar SRAM incorporating MST®. Significant improvements in SRAM yield and Vmin are demonstrated, which are expected to be important for ultra-low power applications.
Punch-Through Stop Doping Profile Control via Interstitial Trapping by Oxygen-Insertion Silicon Channel
IEEE J-EDS November, 2017”
This paper was invited for a special issue of the IEEE Journal of Electron Device Society based on the high ranking of the EDTM paper of the same title. It is an expanded version of the EDTM paper and includes new material on the TCAD modeling of boron and phosphorus dopants. The paper was written with an additional co-author from Synopsys, which is supporting MST® TCAD.
Comparison of SOI versus Bulk FinFET Technologies for 6T-SRAM Voltage Scaling at the 7-/8-nm Node
IEEE Transactions on Electron Devices, Vol. 64, Issue 1 January, 2017
This paper, with co-authors from UC Berkeley compares the implementation of MST® technology on bulk and SOI FinFETs. It shows that a bulk MST® FinFET provides almost all the benefits of the more challenging SOI implementation for the 7/8nm Node.
Extension of Planar Bulk n-Channel MOSFET Scaling With Oxygen Insertion Technology
IEEE Transactions Electron Devices, vol. 61, no. 9, pp 3345-3349, September 2014 September, 2014
Paper with co-authors from UC Berkeley describing the wide range of power and performance benefits of MST® to extend the industry scaling of low power bulk nMOS devices.
Electron mobility enhancement in (100) oxygen-inserted silicon channel
Applied Physics Letters 107, 123502 (2015) September, 2015
Applied Physics Letter with co-authors from SK Hynix and UC Berkeley detailing the origins of the very large (88%) measured increase in conductance (gm) for Oxygen Inserted (MST®) nMOS devices.
Oxygen-Inserted SegFET: A Candidate for 10 nm Node System-on-Chip Applications
2014 IEEE Silicon Nanoelectronics Workshop June 8, 2014
Paper with authors from UC Berkeley describing how MST® can enhance a new quasi-planar device, the SegFET, with performance that competes with the best 10nm generation devices for Systems-on-a-chip (SOC) applications.
Comparative Study of Uniform Versus Supersteep Retrograde MOSFET Channel Doping and Implications for 6T SRAM Yield
IEEE Transactions Electron Devices, vol. 60, no. 5, pp 1790-1793, May 2013 May 5, 2013
Joint paper with UC Berkeley simulating the improved yield and reduced minimum operating voltage of MST®-enabled 6-T SRAM cells with potentially up to 50% power savings.
Effectivness of Quasi-Confinement Technology for Improving P-Channel Si and Ge MOSFET Performance
2013 IEEE Silicon Nanoelectronics Workshop June 9, 2013
Details the benefits of MST® for silicon and germanium p-type planar & FinFET devices over a wide range of technologies.
Simultaneous Carrier Transport Enhancement and Variability Reduction in Si MOSFETs by Insertion of Partial Monolayers of Oxygen
2012 IEEE Silicon Nanoelectronics Workshop June 10-11, 2012
We demonstrate simultaneous nMOS and pMOS high-field mobility enhancement and variability reduction by inserting partial monolayers of oxygen during silicon epitaxy of the channel layer.
MOSFET Performance and Scalability Enhancement by Insertion of Oxygen Layers
IEEE IEDM 2012 December 12, 2012
IEDM paper with UC Berkeley, introducing and calibrating the model for the MST® confinement effect using Synopsys Sentaurus platform simulation tools. Mobility (conductivity) enhancement for both nMOS and pMOS devices is demonstrated and predicted to be more effective than strain at the 14nm node.
Tunneling through superlattices: the effect of anisotropy and kinematic coupling
Journal of Physics: Condensed Matter, Volume 24, Number 49 November 12, 2012
Paper analyzing the origins of tunneling of carriers in various superlattice systems and providing a theoretical background for the observed reduction in gate leakage in MST® devices. Gate leakage is one of the sources of power loss and scaling limitation in advanced CMOS technology.
Silicon Superlattice on SOI for High Mobility and Reduced Leakage
IEEE International SOI Conference 2007 October 1-4, 2007
This joint experimental paper with authors from Texas Instruments and Sematech (ATDF) demonstrates the first MST® mobility enhancement and gate leakage reduction results for a MST-enhanced silicon-on-insulator (SOI) technology.